4,154 research outputs found

    Giving light yet another new twist

    Get PDF

    Twisted split-ring-resonator photonic metamaterial with huge optical activity

    Full text link
    Coupled split-ring-resonator metamaterials have previously been shown to exhibit large coupling effects, which are a prerequisite for obtaining large effective optical activity. By a suitable lateral arrangement of these building blocks, we completely eliminate linear birefringence and obtain pure optical activity and connected circular optical dichroism. Experiments at around 100-THz frequency and corresponding modeling are in good agreement. Rotation angles of about 30 degrees for 205nm sample thickness are derived.Comment: 6 pages, 4 figure

    VADA: A transformation-based system for variable dependence analysis

    Get PDF
    Variable dependence is an analysis problem in which the aim is to determine the set of input variables that can affect the values stored in a chosen set of intermediate program variables. This paper shows the relationship between the variable dependence analysis problem and slicing and describes VADA, a system that implements variable dependence analysis. In order to cover the full range of C constructs and features, a transformation to a core language is employed Thus, the full analysis is required only for the core language, which is relatively simple. This reduces the overall effort required for dependency analysis. The transformations used need preserve only the variable dependence relation, and therefore need not be meaning preserving in the traditional sense. The paper describes how this relaxed meaning further simplifies the transformation phase of the approach. Finally, the results of an empirical study into the performance of the system are presented

    Numerical Investigation of Light Scattering off Split-Ring Resonators

    Full text link
    Recently, split ring-resonators (SRR's) have been realized experimentally in the near infrared (NIR) and optical regime. In this contribution we numerically investigate light propagation through an array of metallic SRR's in the NIR and optical regime and compare our results to experimental results. We find numerical solutions to the time-harmonic Maxwell's equations by using advanced finite-element-methods (FEM). The geometry of the problem is discretized with unstructured tetrahedral meshes. Higher order, vectorial elements (edge elements) are used as ansatz functions. Transparent boundary conditions and periodic boundary conditions are implemented, which allow to treat light scattering problems off periodic structures. This simulation tool enables us to obtain transmission and reflection spectra of plane waves which are incident onto the SRR array under arbitrary angles of incidence, with arbitrary polarization, and with arbitrary wavelength-dependencies of the permittivity tensor. We compare the computed spectra to experimental results and investigate resonances of the system.Comment: 9 pages, 8 figures (see original publication for images with a better resolution

    Realization of a three-functional-layer negative-index photonic metamaterial

    Get PDF

    Backward waves moving forward

    Get PDF

    Negative Refractive Index at Optical Wavelengths

    Get PDF

    Numerical calculations of effective elastic properties of two cellular structures

    Full text link
    Young's moduli of regular two-dimensional truss-like and eye-shape-like structures are simulated by using the finite element method. The structures are the idealizations of soft polymeric materials used in the electret applications. In the simulations size of the representative smallest units are varied, which changes the dimensions of the cell-walls in the structures. A power-law expression with a quadratic as the exponential term is proposed for the effective Young's moduli of the systems as a function of the solid volume fraction. The data is divided into three regions with respect to the volume fraction; low, intermediate and high concentrations. The parameters of the proposed power-law expression in each region are later represented as a function of the structural parameters, unit-cell dimensions. The presented expression can be used to predict structure/property relationship in materials with similar cellular structures. It is observed that the structures with volume fractions of solid higher than 0.15 exhibit the importance of the cell-wall thickness contribution in the elastic properties. The cell-wall thickness is the most significant factor to predict the effective Young's modulus of regular cellular structures at high volume fractions of solid. At lower concentrations of solid, eye-like structure yields lower Young's modulus than the truss-like structure with the similar anisotropy. Comparison of the numerical results with those of experimental data of poly(propylene) show good aggreement regarding the influence of cell-wall thickness on elastic properties of thin cellular films.Comment: 7 figures and 2 table

    Chiral particle separation by a non-chiral micro-lattice

    Full text link
    We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Micro-particles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of the lattice relatively to the fluid flow
    • ā€¦
    corecore